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T U R B U L E N T  H E A T -  A N D - M A S S - T R A N S F E R  M O D E L  

I N  A N E A R - W A L L  Z O N E  O F  S E P A R A T E D  F L O W S  

A. V.  Gorin and D.  F. Sikovskii UDC 532.526 

I n t r o d u c t i o n .  Modeling of turbulence and the processes of heat transfer in separated flows is an 
important  problem of modern thermohydrodynamics.  The main difficulty of this task is that  of simulating 
adequately flow in near-wall zones, which play a determining part  in heat transfer processes. In developed 
turbulent flow, the viscous sublayer, which usually accumulates the main thermal resistance, is very thin 
(comparable in order of magni tude with the Kolmogorov length scale). Numerical solution requires a high 
grid resolution near the boundary, which complicates the computat ion scheme and increases computer time. 

To eliminate this difficulty, instead of flow calculation in the entire flow region up to the boundary, 
one should employ the condition of matching of the numerical solution with the so-called wall functions [1] 

1 
u+ = - - l ny+  + B; (1) 

T+ = 1 In y+ + Bt. (2) 
~ t  

Here u+ = u /v , ;  u is the longitudinal mean velocity; v. is the friction velocity; T+ = pcov, (T,~ - T) /q;  T is 
the mean temperature; Tw is the wall temperature; q is the wall heat flux; p and co are the density and specific 
heat capacity; y+ = v , y / v ;  y is the distance to the wall; ze and B are constants that  are considered universal; 
zet and Bt are functions of the Prandt l  number  Pr = v/a;  and a is the thermal diffusivity. 

The use of wall functions (1) and (2) is based on the hypothesis that  boundary-layer turbulence has 
universal properties which are determined by the wall shear stress divided by density (an incompressible fluid 
is considered): ~'w = v. 2. However, violation of the universality of the logarithmic law of the wall in a turbulent 
boundary layer with an adverse pressure gradient d P / d x  > 0 was recently proved experimentally [2, 3]. In [3], 
a logarithmic section of the velocity profile (1) occurred near the wall; however, the quantity B decreased 
monotonically as the pressure gradient parameter P+ = v (dP/dz) / (pv3 . )  increased; the value of ze varied 
slightly. 

In earlier experiments of [2] with a wall shear stress (measured independently by an electrochemical 
technique), the turbulent  boundary layer in a diffuser in the presence of separation was studied. As the 
separation cross-section was approached, despite a decrease in P+, the value of B in law (1) decreased, while 
ae increased. Also, an ambiguity in the dependence of ze and B on P+ was observed: for similar values of P+, 
the velocity profiles in the coordinates of the wall law u+ (y+) differed significantly from each other. 

Such boundary-layer behavior cannot be explained on the basis of traditional concepts, according to 
which the turbulence structure in the near-wall layer is determined only by the parameters in the averaged 
equations of motion. The nature of turbulent  separating flow is much more complicated. 

As compared with a zero-pressure-gradient boundary layer, an increase in turbulence intensity by more 
than a factor of two is observed (in the experiments of [2] the ratio of root-mean-square fluctuation amplitude 
of the longitudinal velocity u ~ to the mean local velocity u reached 0.7). Qualitative changes in the structure 
of Reynolds stresses, which involved an in increase in the contribution of strong fluctuation events of u~v ~, 
occurred near the separation. 
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Fig. 1 

Simpson [4] noted the significant role of large-scale coherent structures in separated turbulent flow, 
which results in an unsteady separation process. Unsteadiness is most pronounced at the separation point 
and in the backflow zone. Backflow is initiated by large vortex structures which arrive from the mixing layer 
above the recirculation zone. The turbulence intensity in this region is on the order of unity and even higher 
in some places [4-6]. Simpson [4] concluded that the mean velocity profile in backflow is the result of time 
averaging of unsteady turbulent flow of large amplitude and large space scale, and, therefore, the Reynolds 
shear stress has no local connection with the average velocity gradient. Thus, information only on the mean 
flow parameters is not sufficient to simulate adequately separating turbulent flows. One should also use the 
fluctuation characteristics related to unsteady separation. 

We propose a physical model of near-wall turbulent separated flow that  is based on the assumption 
of the governing role of the induced local pressure gradient arms in transfer processes that take place in the 
close proximity of the wall in separated flow. This assumption is related to the idea (based on experimental 
observations) that flow in the near-wall zone is subjected to intense instantaneous accelerations induced 
by large-scale vortex flow structures. The root~mean-square wall-pressure gradient arms is a qualitative 
characteristic of these accelerations. From considerations of similitude and dimensionality, we derive laws 
for the behavior of the mean and fluctuating characteristics of near-wall turbulence, velocity and pressure 
fluctuation spectra, the "2/3 power law" (Nu ~., Re 2D) for the Wall heat-and-mass-transfer coefficient, and 
the relationship between the latter and the pressure fluctuation level on the wall h ,~ (p~ms) 1/s. The laws 
obtained are confirmed by the available experimental data. 

T u r b u l e n c e  S t r u c t u r e  in t h e  B o u n d a r y  Laye r  of  S e p a r a t e d  Flows.  Before considering the 
principles of the model proposed here, we cite some known experimental data for separated flow on a flat 
surface studied in [7]. 

In the recirculation zone behind the separation point, the backflow velocity has a maximum UN at a 
distance N from the wall which is far smaller than the local boundary layer thickness 5 [the distance from 
the wall at which the longitudinal velocity U becomes 0.99Uoo (Uoo is the external flow velocity in the given 
cross-section)]. In the cross section x = 397.3 cm, we have N = 0.065. The flow region of 0 < y < N is usually 
called the near-wall zone of recirculation flow. 

Let us estimate the scales of turbulent motion in the near-wall zone. According to the measurement 
results of [7] for longitudinal velocity spectra, the characteristic frequency of large-scale motion is 

f ,-, 5 . 1 0 - 2 U ~ / 5 .  (3) 

Assuming that the phase velocity of turbulent disturbances is of the order of UN, with allowance for 
(3), we obtain an estimate of the wavelength 

" U N / f  '~ 205UN/Uoo ~ 25, (4) 

since the ratio UN/Uoo is on the order of 10 -1 [7]. With allowance for of the estimate N --~ 0.065, relation (4) 
can be written as 

A/N ,~ 33. (5) 

Thus, the spatial dimensions of low-frequency fluctuations of the longitudinal velocity in the near-wall 
layer are much greater than the layer thickness. On the other hand, according to the measurements of [7], the 
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root-me.an-square fluctuation of the transverse velocity v . .  s '  in the near-wall layer is an order of magnitude 
lower than the longitudinal fluctuation u'r,ns- These facts indicate that the large-scale motion in the near-wall 
layer is of the character of an unsteady boundary layer. In this case the role of external flow is played by 
large-scale unsteady recirculation flow supported by large-scale vortices from the mixing layer above (see Fig. 
1, where the dashed curve represents zero velocity). Since the fluctuation level ur,ns' is on the order of the 
mean velocity U, unsteady motion in the boundary layer is characterized by a large amplitude. Reasoning 
from (3)-(5) and the above data, the characteristic frequency is related to the boundary layer parameters by 
the estimate 

f ..~ 3 .  IO-2UN/N.  (6) 

Thus, turbulent motion in the boundary layer can be divided into two components: a large-scale 
component with a length scale much greater than the near-wall layer thickness N and a small-scale component, 
which is composed of vortices with a size of the order of N and smaller. Averaging the Navier-Stokes 
equations over small-scMe fluctuations and assuming no correlation between large-scale and small-scale 
velocity fluctuations, we obtain the equations of large-scale motion in the near-wM1 layer in a boundary- 
layer approximation: 

Ou Ou Ou Ou Or 02u Ou Ov Ow 
oy2,  --+ax + 7 z  = 0 .  (7) 

Here u = (u, w) is the large-scale velocity vector; u, w, and v are the x, z, and y velocity components; 
o~ : p-1 (Op/Ox,. Op/Oz) is the large-scale kinematic pressure gradient; "r = - (  (u 'v ' l ,  (v 'w')  ) is the large-scale 
Reynolds stress; the angle brackets denote averaging over small-scale fluctuations; the Ox axis is directed 
along the free flow; and the prime denotes small-scale velocity fluctuations. Equations (7) takes into account 
the three-dimensionality of large-scale motion in the separated flow. 

In deriving the unsteady Reynolds equations (7), we applied the Reynolds averaging rules.[8]: 

= = 0, = + = = 0 

where r and ~2 are variables related to the flow (pressure or any velocity component). 
The boundary layer described by Eqs. (7) has a time-dependent thickness SN (t, x, z), whose average 

over a large time interval equals N (z). For y = 6N, the velocity field u should match the external large-scale 
velocity field Ue (t, x, z), and the Reynolds stresses should match the external large-scale field a'~ (t, x, z): 

u = U ~ ,  r = r ~  at Y=$N-  (8) 

The conditions of attachment and vanishing of turbulent stresses are assigned at the wall (y = 0): 

u = 0 ,  r = 0  at y = O .  (9) 

When the distances from the wall are far smaller than the near-wall layer thickness, convective terms 
in Eq. (7) are insignificant, and the equation of motion expresses the balance between the pressure gradient 
and the Reynolds and viscous stresses: 

O r  O2u 
o r=  ~ y  q- t/ Oy 2 , y << ~S g .  

Integrating with respect to y, with allowance for (9), we obtain 

0 u  
1- = ~-~ + '~u - ~ b-U~' (10) 

where "t'w = u (Ou/Oy)y=o is the wall shear stress. 
When the Reynolds numbers of the free flow are fairly great, a viscous sublayer is in the proximity of 

the wall. The sublayer thickness is far less than the boundary layer thickness (Iv << ~Y)- For y >> l,, viscosity 
affects only slightly the Reynolds stress distribution, the last term in (10) can be ignored, and we have 

r = rw + ~y, I~ << y << 6N. (II) 
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In steady zero-pressure-gradient flow (Ou/Ot = 0, a = 0) expression (11) is of the form "r = r,a,, which 
corresponds to a sublayer of constant shear stress, within which the statistical characteristics of turbulence 
are determined by the friction velocity v,. 

As was noted above, in the presence of a pressure gradient, a sublayer of constant shear stress exists 
only for sufficiently small values of P+. The critical value of P+, beginning from which the sublayer disappears, 
can be estimated as follows. It is known that  a logarithmic velocity profile characteristic of the constant-stress 
sublayer occurs in zero-pressure-gradient flow when y > 30v/v,. On the other hand, following (11), when 
y ... v2,/a, the effect of the pressure gradient on the Reynolds shear stress distribution near the wall becomes 
significant. Thus, one can assume that for v2,/a ~ 30v/v,, i.e., for P+ .-. 3 �9 10 -2, the effect of the pressure 
gradient reaches the boundaries of the viscous sublayer, and the constant-stress sublayer degenerates. This 
es.timate agrees with the experimental results of [2], which showed the absence of a logarithmic wall law for 
P+ ,-, 2 .10  -2. 

In separated flows the instantaneous values of P+ can exceed significantly the above value. For separated 
flow behind a backward facing step of height H, one can write the following estimates for the orders of 
instantaneous values of c~ and rw: 

(~ .,~ p ' / (pH)  = Cp, U~/ (2H);  (12) 

(13) 

Here p' and l"lw are the root-mean-square fluctuations of pressure and wall shear stress. By virtue of (12) and 
(13), we obtain 

p+ v l(Tw)312 ,12 312 = ..* 2 Cp,/(ReHC/, ). (14) 

The typical value of Cp, in separated flows is 10 -1 [9]. For separated flows [6], Cf,  max = 8 . 1 0  -4 
for ReH = 3.5 �9 10 4 in the vicinity of the reattachment point. Substituting these values into (14), we have 
P+ ~ 2 .10  -1, which exceeds by an order the critical value found above. 

Thus, fluid acceleration in the near-wall layer that is produced by large-scale vortices of separated 
flows prevents formation of a sublayer of constant shear stress. In this connection, the friction velocity v, is 
not a governing parameter of the near-wall layer of turbulent separated flow. Following (11), the governing 
parameter is an instantaneous value of the kinematic pressure gradient a: 

r = ay, l~ << y << 6N, (15) 

because "rw in (11) can be ignored compared with cry. The statistical regime of turbulent flow in the region of 
I~ << y << @ should be determined by the only parameters of the problem: ot and y. Then, from dimensionality 
considerations, the thickness of the viscous sublayer is given by 

~  2/3 -1/3 (a = I 1). (16) 

For the mean velocity profile, one can write 

cOncOy _ zel ~ ( y )  1 / 2 o ~  (17) 

(ze is a universal constant). In projection onto or, formulas (15) and (17) lead to the well-known Prandtl 
formula r = (~ddu/dy)  2. Integration of (17) with respect to y gives a "half-power law" for the large-scale 
longitudinal velocity profile: 

2 a  U -~ -- -- (ay) I/2 § K (18) 
(~ 

(K is a vector independent of y). Averaging (18) over a large time interval gives an expression for the mean 

velocity along x (in view of two-dimensionality of mean motion, ~z = 0, a-1/2(~z = 0, and there is no motion 
along z): 

= _2 ~-1 /2~:  y,12 + Kx = 2 ( 1 ~ 1 y ) ' / 2  + K~. (19) U 
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Here the bar denotes an average over a long time interval: 

, (1 1) 
= ~ ( 2 0 )  

Ot-1/2ax 
Expression (19) resembles the well-known "half-power law" for the separated velocity profile in a 

boundary layer with an adverse pressure gradient ~'x [10]. However, the constant ze' in (19) is not universal 
and, following (20), depends on the statistical regime of large-scale flow vortices which produce large-scale 
fluctuations of the kinematic pressure gradient. This dependence explains the observed spread of measured 
values in different separated and adverse pressure-gradient flows [11]. 

Subtracting from (18) its mean value, we determine the large-scale velocity fluctuation u t. Averaging 
the squares of its projections along the Ox and Oz directions, we obtain expressions for fluctuation intensities: 

--u, 2 = ~4 (ot_l/2~ x _ ct_l/2t~z)2y + 0 (Kal/2yl[2);  (21) 

4 
w '2 = ~ a-let2 z y + 0 (Kctl/2yl]2). (22) 

The values under the bar on the right-hand sides of (21) and (22) are obviously proportional to the 
root-mean-square fluctuation ampli tude of the large-scale pressure gradient in the appropriate directions: 

(Ot--I/2otx -- ot--l/2otx) 2 = '.-'x(-Y k"*x{*"t2/l[2] , 0~--1~ 2 ----" Cz (ottz2) 112 

where a z = a ,  - a , ;  a z = az; the dimensionless coefficients C,  and Cz depend on the statistical regime of 
fluctuations or, which is determined by the structure of large-scale vortices. Hence, 

4Cz , 
u '2 = ~ a.,,m , y + o (an); (23) 

w ,2 4Cz , 
= ee 2 a , , , m s y + o ( a y  ). (24) 

Since large-scale velocity fluctuations are the most energetic, formulas (23) and (24) are also valid for 
total velocity fluctuations (including large- and small-scale fluctuations). 

By virtue of the assumption of the governing role of acceleration of ct in the turbulence dynamics in the 
boundary layer of separated flow, the longitudinal spectrum of velocity fluctuations in its small-scale region, 
i.e., within the range of wave numbers 5~ 1 << k. << Iv 1, should depend on or, k, ,  and y. 

For kzy << 1, the otatistical regime of velocity fluctuations is independent of y, and the spectrum is 
determined by the parameters a and kx: 

Eij  (kz) = aijotkx 2, ~NI (< kz << y - l ,  (25) 

Here Eq (k,) is the longitudinal spectrum of velocity fluctuations: Eii (k , )  dkz = durum; k~: is the longitudinal 
way- number; and aij are universal constants. Expression (25) coincides with the " - 2  power law" obtained 
for the boundary layer with an adverse pressure gradient a in [12]. Averaging (25) over a long time interval, 
we have 

"Eij (k,) ' -2 N - I  (26) -= aijOtrmskz , << ]r << y - l ,  

where a~j = alilot[/~r,ns are constants determined by the statistics of large-scale vortices; at,he = (~-~)1/2. 
In a similar way, for a small-scale spectrum of pressure fluctuations we obtain the expression Epp (k~) = 

app2v~2k-~ 3, which is averaged over time to give the " - 3  power law": 

Epp (k.) 2 2 -3 (27) = app ~ r r a s ] %  . 

Let us cite some experimental data confirming the above similitude laws. First let us consider the 
measurement results of [7] for the components of the equation of motion, 

OU OU l O P  (02U OZU~ O( -u ' v ' )  Ou '2 
v -g-; + v + - .  + + , (2s) 

p Oz \ Oy 2 -Oz-iz2] Oy Ox 
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in the section x = 397.3 cm of the boundary layer on a flat surface downstream from the separation point. In 
this section, the backflow velocity has a maximum for N = 0.066. As follows from the data of [7], within the 
near-wall layer (y < N)  convective terms are small practically everywhere. The pressure gradient constant 
over the section is the dominating term in Eq. (28). It is balanced by viscous accelerations in the region of 
0 < y < 0.016 and by the gradient of Reynolds shear stress in the region of 0.016 < y < 0.066. The region 
of 0.016 < y < 0.066 can be considered a region of validity of the time-averaged relation (I5). It should be 
noted that the data of Simpson et al. [7] do not agree with the opinion of Adams et al. [5, 6] (with reference 
to [7]) that terms with Reynolds stresses are insignificant in the equation of motion in the near-wall zone of 
recirculation flow. 

Figure 2 presents longitudinal velocity fluctuation spectra F (k) = Ez~ (k) /u  '2 measured near the 
bot tom of square (a) and rectangular (b) cavities in the middle section [13]. The square cavity was 150 x 
150 mm, and the thickness of the boundary layer was N ~ 7 mm. As is seen from Fig. 2a, in the range of 
wave numbers k= >~ N -z the " - 2  power law" is valid in accordance with (26). 

Since pressure fluctuations within the flow are difficult to measure, there are no experimental data 
in the literature. Let us turn to the available measurement data for pressure fluctuations on the wall. The 
~-3  power law" (27), which was derived above from dimensionality considerations, was previously found 
experimentally in [14], where Fig. 5 shows the frequency spectrum of fluctuations in different sections of the 
adverse pressure gradient boundary layer on a flat surface behind the separation point. When w6,/Uoo > 1, 
there is an interval w -3 in the spectrum. Following the data in [14], the phase velocity of pressure disturbances 
Uph was constant over this frequency range within the measurement accuracy. Therefore, the data discussed 
can be considered a confirmation of the presence of an interval of the " - 3  power law" (27) in the pressure 
fluctuation spectra of separated flow. 

Detailed measurements of the longitudinal velocity fluctuation intensities in the near-wall layer of 
recirculation flow behind a sudden increase in tube diameter are presented in [6]. Figure 3 shows the data 
of [6] in the coordinates u, = u'/v~, and y, = vt, y / v  (u' is the mean-square longitudinal velocity fluctuation, 

' (r~w) 1/2, rtw is the root-mean-square wall shear stress fluctuation, xR is the distance from the reattachment 

point). As is seen from Fig. 3, near the wall the fluctuation intensity profiles merge into one curve u, = 1.6y~/2 
in accordance with (21). It should be noted that from dimensionality considerations the "fluctuating friction 

, (~ .rms)l /S.  velocity" v,~ should be given by the relation v, 
The smallness of the convective terms of the equation of motion in the near-wall layer of recirculation 
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flow behind the separation point, which was noted in analyzing the experimental results of [4, 7], can serve 
as a basis for extending the "half-power law" to the mean velocity profile (,19) for the entire near-wall zone 
0 < y < N :  

Uu 
The displacement thickness for such a profile is 6, = N/3, and hence the last relation can be written as 

u = ( u_t_)'/2 
U~v \ 3 6 , )  ' 

(29) 

which is more convenient for comparison with an experiment, since the accuracy of experimental determination 
of N from the measured velocity profiles is often lower than that for 6.. Distribution (29) is consistent with 
the form parameter H = 2.0, which corresponds to the experimental value [5]. In Fig. 4, relation (29) is 
compared with the experimental velocity profiles in the near-wall layer of recirculation flow behind a step [5]. 

Thus, the assumption of the governing role of the statistical characteristics of the large-scale kinematic 
pressure gradient o~ in the transfer processes in the near-wall zone of separated turbulent flow leads to the 
similarity laws for mean and fluctuating velocities and fluctuation spectra of velocity and pressure that are 
consistent with different experimental data. 

Wall  H e a t  T r a n s f e r  in T u r b u l e n t  S e p a r a t e d  Flow. When the Prandtl numbers are on the order 
of unity for distances from the wall Iv << y << 6N, the heat transfer is characterized by a constant turbulent 
heat flux v'T l = q/(pco), 4 << y << 61v. Then, the temperature gradient should be determined by the values 

ql(p o), y: 
OT/Oy ,~, -q/(pcoal/2y3/2), Iv << y << 6N, 

which leads to an "inverse half-power law" for the temperature profile: 

T =  Kt q pc0 (ay) z/2 + const 

(Ks is a universal function of the Prandtl  number). 
Averaging over a long time interval gives 

T =  g~ q pco (cry) 1/2 + const, (30) 

where 
1 / 2  

q 
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TABLE 1 

No. Geometry L No. Geometry L 

4 --~.~ -" d 

~ 0 

2 -~ ( ,d' ) d 

�9 
],a" ~ . 

e/VF 

is a constant that depends on the statistical regime of large-scale vortices. Expression (30) resembles the 
"inverse half-power law" for the mean temperature profile in a turbulent boundary layer with an adverse 
pressure gradient [15]. 

Analysis of numerous experimental data in the literature on the temperature profiles in separated flow 
shows the presence of an "inverse half-power law" in the measured temperature profiles in the boundary layer. 
Figure 5 gives the temperature profiles in the reattachment section of separated flow behind a rectangular 
obstacle on a flat surface [16]. In this case, 0* = St -!/2 (T - T,, ,)/(T - Too), y* = (yUoo/u)St 1/2, St = 
q/[pcoUoo (Too - Tw)], ~* is the displacement thickness of the incoming boundary layer, and h is the obstacle 
height. 

Following (30), with distance from the wall the temperature gradient decreases as y-1/2, i.e., more 
rapidly than in the logarithmic distribution which is characteristic of a zero-pressure-gradient boundary layer. 
Therefore, the contribution of the viscous sublayer to the total thermal resistance in separated flow is more 
significant than in the usual turbulence boundary layer with dP/dx  = O. 

Actually, from (30), one can obtain an estimate for the temperature gradient between the boundary of 
the viscous sublayer (y = Iu) and the boundary of the near-wall layer (y = ~N): AT~N .., "q/[pco (arm3g)l/2]. 

The temperature difference between the wall and the boundary of the viscous sublayer is of the order 
of ATw~ ,.. qlv/)~ ()~ is the thermal conductivity). The ratio of the two values is 

ATvN a 
AT~,------'~ "~ ~ (arm,g)U2" (31) 

The thickness of the viscous sublayer in separated flow is determined from (16). Then, the thickness 

of the viscous sublayer l~ averaged over a long time interval is of the order of u2/3a-f~/3. Hence, expression 
(31) becomes 

/kT~N ~ pr_ 1 (~/N)1/2  << 1 
AT~ 

Thus, one can assume that the main temperature gradient is concentrated within the viscous sublayer, 
in which the effective thermal conductivity is nearly molecular. Then, the wall heat transfer coefficient is 
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given by the expression q/(Tw - Too) ~ A/Iv "~ Au-21sa]Ia, where the proportionality factor is a universal 
function of Pr. The average wall heat transfer coefficient is the ratio of the average thermal flux to the average 
temperature gradient: 

hw = -q/(Tw - Too) = coast _X,~-2/s- l / s _  -r,ns" (32) 

Here the proportionality factor includes, in addition to the universal function Pr, the cofactor 

~1/3 (Tw 1/a -Too)[[ar ,ns(Tw- Too)], which is a coefficient that is determined by the statistics of large-scale 
vortices. Applying the Nusselt and Reynolds numbers Nu = hwL/A and Re = UooL/v (L is the characteristic 
external dimension and Uoo is the external flow velocity), we write (32) in the form 

Nu = const C~/3Re z/3, (33) 

where the criterion Ca = armsL/U~ is introduced. 
The magnitude of the boundary-layer accelerations Otrm s due to large-scale vortices that move at a 

velocity of the order of Uoo and have dimensions of the order of L can be estimated as a .n s  "~ U~/L ,  so 
that the coefficient Ca is independent of the Reynolds number and expression (33) is the "2/3 power law" 
(Nu -~ Re 2/3) for turbulent heat transfer in separated flows. Thus, the "2/3 power law," which was found 
experimentally in the early 1960s [17] and is encountered in almost all thermal experiments with turbulent 
separation~ has received theoretical justification for the first time. 

Following (32), heat transfer intensity depends on the mean-square fluctuation amplitude of the near- 
wall pressure gradient c~.~s. Since no direct measurements of a . . s  have been performed, it is impossible to 
compare the law of heat transfer (33) with experimental data. To perform such a comparison, one should 
relate Otrm s to the values measured in experiments. We assume that there is a relationship between a . , .  and 
the level of wall pressure fluctuations plr,ns and the characteristic length scale of pressure disturbances Iv: 

arms = P'rms/(plp). (34) 

Taking into account (34), we write (33) as 

Nu = const (IplL)-l/3C~/3Re2/3, (35) 

2prms/(pU~) is the coefficient of pressure fluctuations. where C v, = o 2 

Expression (35) gives the relationship hw .v (p'ms)U s between the heat transfer coefficient and the 
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level of wall pressure fluctuations obtained experimentally by Igarashi [18], who studied the effect of the 
fluctuation level of the bot tom pressure on the average heat transfer coefficient in the rear zone of a cylinder 
in transverse air flow and in the rear zone of a square prism with different angles of attack. The level of 
pressure fluctuations in the rear zone of the cylinder were varied using a vortex generator and two parallel 
cylinders of smaller diameter placed across separated mixing layers (see Table 1). To compare the data of [18] 
with dependence (35), one should estimate the value of lp. We assume that  the length lp is proportional to the 
length of the recirculation zone behind the body, which, in turn, is related to the characteristic cross-sectional 
dimension of the body. As the latter we can use the hydraulic diameter dhyd~ (equal to the cylinder diameter 
and a square side of the prism). Assuming that  the quantity dhyd~ is the scale of L in the Nu and Re numbers 

/wl/31~ ~.2/3 and setting lp ,,, dhrdr = L, we obtain, in accordance with (35), Nu -~ ,~p, . . . .  As is seen from Fig. 6, the 
experimental data of [12] are generalized by the dependence (curve) 

= 0.21cpl/al:te 2/3. (36) Nu 

For a blunt face of the prism (see Table 1, No. 5) it is assumed that  L = dhyd~/~v/'2, since its cross- 
sectional dimensions are smaller by a factor of v ~  compared with a sharp edge of the prism (No. 4). 

The local heat transfer on the surface of a fiat plate in air flow was studied by Ota [19]. Similar 
studies of the hydrodynamics of this object were carried out Kiya et al. [20, 21]. Cherry [21] measured the 
pressure-fluctuation distribution on the wall. Let us assume that  the scale Ip is constant and proportional to 

the half-width of the plate H and set L = H. Then, expression (35) yields Nu ,,~ C,U3Re 2/a. Figure 7 presents 

the data of [19] on the distribution of NuRe -2/a over the plate surface compared with the dependence (curve) 

NuRe -2/3 = 0.23C~/3, (37) 

which describes well the experimental data, except for the region near the leading edge. In this region, in view of 
the proximity of the shedding mixing layer, the turbulence scale is proportional to x [20, 21]. A corresponding 
decrease in the scale Ip leads, according to (35), to an increase in the heat transfer coefficient. Note the 
similarity of (36) and (37). 

The influence of the Prandtl  number on the heat transfer coefficient is usually taken into account by 
including the function Pr ~ in the dependence for heat transfer. Following the recommendations in [22] based 
on measurements of heat transfer in the cylinder's rear zone for 0.7 < Pr < 100, it is assumed that  the 
exponent/3 is 0.45, so that  the laws of heat transfer for the cylinder and plate, respectively, take the form 

Nu = 0.25Cpl/3Re2/3pr 0''5, Nu = 0.27C;DRe2/3pr ~ 

Thus, the laws obtained for transfer processes are supported by experimental results. The model 
proposed can be considered a basis for constructing acceptable wall functions, which are necessary for 
hydrodynamics and heat-and-mass-transfer calculations in complex turbulent flows with separation. 

379 



~ E F E R E N C E S  

1.  

2. 

. 

4 .  

5. 

6. 

7. 

. 

9. 

10. 
11. 

12. 

13. 

14. 

15. 

16. 

17. 
18. 

I9. 

20. 

21. 

22. 

B. E. Launder, "On the computation of convective heat transfer in complex turbulent flows," Trans. 
ASME, Set. C, J. Heat Transfer, No. 4, 1112 (1988). 
E. M. Khabakhpasheva and G. I. Efimenko, "Structure of turbulent flow in a plane diffuser," in: 
Structure of Forced and Thermogravitational Flows [in Russian], Institute of Thermophysics, Sib. 
Div., Russian Acad. of Sci., Novosibirsk (1983), pp. 5-31. 
Y. Nagano, M. Tagawa, and D. Tsuji, "Effects of adverse pressure gradient on mean flows and 
turbulence statistics in a boundary layer," in: Turbulent Shear Flows 8, Selected Papers from the 
8th International Symposium, Munich (1993), pp. 7-21. 
R. L. Simpson, "Turbulent boundary-layer separation," Ann. Rev. Fluid Mech., 21, 205-234 (1989). 
E. V. Adams and J. P. Johnston, "Flow structure in a boundary layer of a turbulent separated flow," 
Aerocosm. Tekh., No. 5, 3-13 (1989). 
W. J. Devenport and E. P. Sutton, "Near-wall behavior of separated and reattaching flows," AIAA J., 
29, No. 1, 25-31 (1991). 
R. L. Simpson, Y. T. Chew, and B. G. Shivaprasad, "Structure of a separating turbulent boundary 
layer. Part 1. Mean flow and Reynolds stresses. Part 2. Higher-order turbulence results," J. Fluid 
Mech., 113, 23-51 and 53-73 (1981). 
H. Tennekes and J. L. Lumley, A First Course in Turbulence, MIT Press, Cambridge, Mass. (1972). 
H. S. Govinda Ram and V. H. Arakeri, "Studies on unsteady pressure field in the region of separating 
or reattaching flows," J. Fluid Eng., 112, 402--408 (1990). 
A. A. Townsend, The Structure of Turbulent Shear Flow, Cambridge Univ. Press, Cambridge (1976). 
A. E. Perry and W. H. Schofield, "Mean velocity and shear stress distribution in turbulent boundary 
layers," Phys. Fluids, 16, No. 12, 2068-2074 (1973). 
B. A. Kader and A. M. Yaglom, "Spectra of anisotropic turbulent pulsations of velocity and 
temperature in near-wall turbulent flows," in: Problems .of Turbulent Flows [Russian translation], 
Nauka, Moscow (1987), pp. 65-74. 
I. M. Varfolomeev, G. A. Glebov, Yu. F. Gortyshov, et al., "Structure of turbulent separated flow in a 
rectangular cavity," in: Nvar-Wall Jet Flows [in Russian], E. P. Volchkov (ed.), Inst. Thermal Phys., 
Sib. Div, Russian Acad. Sci., Novosibirsk (1984), pp. 86-92. 
R. L. Simpson, M. Ghodbane, and B. E. McGrath, "Surface pressure fluctuations in a separatin G 
turbulent boundary layer," J. Fluid Mech., 177, 167-186 (1987). 
B. A. Kader, "Heat and mass transfer in pressure-gradient boundary layers," Int. J. Heat Mass 
Transfer, 34, No. 11, 2837-2858 (1991). 
A. Pedishyus and A. Shlanciauskas, Near-Wall Turbulent Heat Transfer [in Russian], Mokslas, Vilnus 
(1987). 
Paul K. Chang, Separation of Flows, Pergamon Press, Oxford (1970). 
T. Igarashi, "Correlation between heat transfer and fluctuating pressure in the separated region of a 
bluff body," in: 8th Int. Heat Transfer Conf., San Francisco, 3 (1986), pp. 1023-1028. 
T. Ota and N. Kon, "Heat transfer in separated and reattaching flows on a blunt flat plate," Trans. 
ASME, Set. C, J. Heat Transfer, 96, No. 4, 29-32 (1974). 
M. Kija and K. Sasaki, "Structure of a turbulent separation bubble," J. Fluid Mech., 137, 83-113 
(1983). 
N. J. Cherry, R. Hillier, and M. E. M. P. Latour, "Unsteady measurements in a separated and 
reattaching flow," J. Fluid Mech., 144, 13-46 (1984). 
A. Zhukauskas and I. Zhyugzhda, Heat Release of a Cylinder in Transverse Liquid Flow [in Russian], 
Mokslas, Vilnus (1979). 

380 


